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Abstract— Consider a pair of correlated sources (X, Y ). With
the collection of typical sequences of X and Y , one can associate
a nearly semi-regular bipartite graph. The typical sequences
of X and Y form vertices, and two sequences are connected
by an edge if they are jointly typical. In this work, we study
the structural properties of these graphs. In particular, we
study regularity and sparcity of this graph by considering the
asymptotic properties of samples taken from this graph. These
results find applications in certain frameworks for transmission
of correlated sources over multiuser channels.

I. INTRODUCTION

A fundamental concept which has been instrumental in
the development of information theory is the notion of
typicality. As an illustration, consider a pair (X, Y ) of
discrete memoryless stationary correlated sources with finite
alphabets X and Y , respectively, and a generic probability
distribution pX,Y (·, ·). An n-length sequence xn ∈ Xn is
said to be typical (or individually typical) if its empirical
histogram is close to the marginal distribution pX of X .
Similarly one can define typical sequences for the source Y .
Further, a sequence pair (xn, yn) ∈ Xn × Yn is said to be
jointly typical if its empirical joint histogram is close to the
distribution pX,Y . It has been well-known [1] that for suf-
ficiently large n, (a) there are roughly 2nH(X) (respectively
2nH(Y )) individually typical sequences in Xn (respectively
Yn), (b) there are roughly 2nH(X,Y ) jointly typical sequence
pairs in Xn ×Yn, and (c) for every typical sequence in Xn

(respectively Yn), there are roughly 2nH(Y |X) (respectively
2nH(X|Y )) typical sequences in Yn (respectively Xn) which
are jointly typical. These observations naturally lead to an
undirected bipartite nearly semi-regular [2] graph on the set
of typical sequences. The individually typical sequences in
Xn and Yn form the vertex set of this graph, and a vertex
pair is connected by an edge if it is a jointly typical sequence
pair. This graph may be referred to as the typicality-graph
[3] of (X, Y ). Our goal in this paper is to get a deeper
understanding of this fundamental graph associated with a
pair of correlated sources. Although the size of this graph is
astronomical (when n is large), one can analyze this graph
by looking at the asymptotic behavior of samples taken from
it.

Moreover, it turns out that the insight we get by looking
at correlated sources in this way leads to some interesting
frameworks for the problem of transmission of these sources
over multiuser channels [3], [4], [5], [6], [7], [8], where
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bipartite graphs can be used to represent information in mul-
tiuser systems. In [3], [6], [7], [8], partial characterizations
of the sets of all nearly semi-regular graphs that could be
used to represent a pair of correlated sources for transmission
over multiple-access channels and broadcast channels were
obtained. Similarly, partial characterizations of the sets of
all nearly semi-regular bipartite graphs whose edges can
be reliably transmitted over multiple-access channels and
broadcast channels were also obtained.

With these two motivations, we present two information-
theoretic results in this paper regarding the regularity and the
sparsity of the typicality-graph. The first result is obtained
by doing the following experiment. Suppose we sample 2nR1

sequences from the typical set of X independently with
replacement, and similarly sample 2nR2 sequences from the
typical set of Y . The underlying typicality-graph induces
a graph on these 2nR1 + 2nR2 sequences. We provide a
characterization of the probability that this random subgraph
is sparse. We consider two measures of sparsity. The first is
that the graph has no edge and the other is that the number
of edges is sufficiently small.

The second result is obtained by doing the following
experiment. As before, suppose we sample M sequences
from the typical set of X and N sequences from the typical
set of Y , where M and N are fixed integers. We provide a
characterization of the probability that the induced random
subgraph is fully connected.

The organization of the rest of the paper is as follows.
In Section II, we present the mathematical preliminaries.

These include 2 versions of Suen’s correlation inequality
and Lovász Local Lemma. In Section III we investigate
the probability of there being no jointly typical sequences
in a sampling from the respective typical sets of 2 ran-
dom variables, i.e., the typicality graph has no edges. This
question was treated in [9] where the authors showed that
the probability of this event can be made arbitrarily small
for sufficiently large n. We derive tighter upper and lower
bounds for the probability of this event. We also generalize
it to the case of more than 2 variables. Upper bounds on
the probability of significantly less number of jointly typical
sequences than expected are also derived. In Section IV,
we treat the other extreme case of all pairs of sequences
being jointly typical, i.e., the typicality graph is completely
connected. In Section V, we discuss the applications of this
result and conclude the paper.

A. Notation

A word about the notation used in this paper is in order.
We use the notation of Csiszár and Körner ([1]) for types,



typical sets and conditional types. The ε-typical set of n-
length xn sequences is denoted A

(n)
ε (X). This is sometimes

abbreviated as Aε(X) or simply A(X). The cardinality of
set A is denoted by | A |.

The distance between 2 distributions defined on the same
alphabet is defined as follows:

| P (x)−Q(x) |= max
a∈X

| P (a)−Q(a) | (1)

Denote by N(a | xn) the number of occurrences of a ∈ X
in the sequence xn. N(a, b | xn, yn) is similarly defined as
the number of joint occurrences of the pair (a, b) ∈ X × Y
in the pair xn × yn. We say that yn ∈ Yn has conditional
type V given xn ∈ Xn if ∀a ∈ X , b ∈ Y

N(a, b | xn, yn) = N(a | xn)V (b | a) (2)

For any given xn ∈ Xn and stochastic matrix V : X →
Y , the set of sequences yn ∈ Yn having conditional type
V given xn will be called the V -shell of xn, denoted by
TV (xn).

We use the notation
∑

∼xi
(·) to denote that the summation

is over all variables other than xi.

II. MATHEMATICAL PRELIMINARIES

In this section, we present the mathematical tools used in
the subsequent sections.

A. Suen’s inequalities

Suen’s inequalities provide bounds for the probabilities
of sums of (possibly dependent) indicator random variables
([10], [11], [12]). They use the concept of a dependency
graph. For a given finite family of indicator random variables,
the dependency graph is constructed by denoting each ran-
dom variable Ii with vertex i and an edge between vertices
i and j if the indicator random variables Ii and Ij are
dependent. One version of the inequality can be stated as
below.

Theorem 2.1: Let Ii ∈ Be(pi), i ∈ I be a family of
Bernoulli random variables having a dependency graph L
with vertex set I and edge set E(L). Let X =

∑
i Ii and

λ = EX =
∑

i pi. Moreover, write i ∼ j if (i, j) ∈ E(L)
and let ∆ = 1

2

∑∑
i∼j E(IiIj) and δ = maxi

∑
k∼i pk.

Then

P (X = 0) ≤ exp
{
−min

(
λ2

8∆
,
λ

2
,

λ

6δ

)}
(3)

Under the same assumptions as in Theorem 2.1, it is also
possible to obtain upper bounds for the lower tail of the
distribution of X .

Theorem 2.2: With assumptions as in Theorem 2.1 and
0 ≤ a ≤ 1, we have

P (X ≤ aλ)

≤ exp
{
−min

(
(1− a)2

λ2

8∆ + 2λ
, (1− a)

λ

6δ

)}
(4)

B. Lovász Local Lemma

Lovász Local Lemma ([13]) provides a sufficient condition
for showing that the probability that none of the events from
a given collection of events E1, E2, . . . , En occurs is positive.

Theorem 2.3: Let L be a dependency graph for events
E1, E2, . . . , En in a probability space. Suppose there exists
xi ∈ [0, 1] for 1 ≤ i ≤ n such that

P (Ei) ≤ xi

∏
(i,j)∈E(L)

(1− xj) (5)

Then, the probability that none of the events E1, E2, . . . , En

occurs is lower bounded by

P (∩n
i=1Ēi) ≥

n∏
i=1

(1− xi) (6)

Further improvement can be made by a more careful usage
of Lovász Local Lemma as given by Janson in [11].

Define the function ϕ(x), 0 ≤ x ≤ e−1 to be the smallest
root of the equation

ϕ(x) = exϕ(x) (7)

ϕ(x) is well-defined in [0, e−1] and in particular ϕ(x) =
1+x+O(x2). With λ and δ defined as in Theorem 2.1 and
defining τ , maxi P (Ei), we have the following version of
Lovász Local Lemma.

Theorem 2.4: With definitions as before,

P (∩n
i=1Ēi) ≥ exp{−λϕ(δ + τ)} (8)

III. SPARSE GRAPHS
We present the main result below. Without loss of gener-

ality, we can assume that R1 ≥ R2 for the rest of the paper.

A. Summary of Results

Theorem 3.1: Suppose X and Y are two correlated finite-
alphabet random variables with joint distribution p(x, y). For
any ε > 0 and any positive real numbers R1 and R2 such
that R1 + R2 > I(X;Y ), if two collections of sequences
CX and CY are generated with uniform distribution (with
replacement) on the typical sets A

(n)
ε (X) and A

(n)
ε (Y ) of

size θ1 = 2nR1 and θ2 = 2nR2 respectively, then the number
of jointly typical sequences U in this collection satisfy the
following relation:

lim
n→∞

1
n

log log
1

P (U = 0)
≥ min(R2, R1 + R2 − I(X;Y )) (9)

In fact, this inequality can be shown to be satisfied with
equality in the case of R2 ≤ R1 ≤ I(X;Y ).

One can also derive an upper bound on the tail of the
distribution of the number of jointly typical sequences as
follows.

Theorem 3.2: For any γ > 0, we have

lim
n→∞

1
n

log log
[
P

(
E(U)− U

E(U)
≥ e−nγ

)]−1

≥
{

R1 + R2 − I(X;Y )− γ if R1 < I(X;Y )
R2 − γ if R1 ≥ I(X;Y ) (10)



B. Proof of the upper bound

We first prove the upper bound on the probability of non-
existence (equation (9)) using Suen’s inequality.

Proof: Let Xn(i) and Y n(j) denote the ith and jth

codewords in the random codebooks CX and CY respectively.
For 1 ≤ i ≤ θ1, 1 ≤ j ≤ θ2 define the indicator random

variables as follows.

Uij =
{

1 (Xn(i), Y n(j)) ∈ A
(n)
ε (X, Y )

0 else
(11)

Then the number of jointly typical sequences becomes

U ,
θ1∑

i=1

θ2∑
j=1

Uij (12)

We are interested in the event {U = 0}. By using a suitable
dependency graph, this probability can be bounded using
Suen’s inequality (equation (3)).

It is clear that the indicator random variables Uij and
Ui′j′ (i′ 6= i, j′ 6= j) are independent since the codebooks
are generated by picking sequences i.i.d with replacement.
However the random variable Uij is dependent on all other
indicator random variables of the form Ui′j and Uij′ . Hence
the dependency graph has a very regular structure with
vertices indexed by the ordered pair (i, j), 1 ≤ i ≤ θ1, 1 ≤
j ≤ θ2. Each vertex (i, j) is connected to exactly θ1 +θ2−2
vertices all of which share one of the two indices i or j.
If vertices (i, j) and (k, l) are connected (i.e. {i = k} or
{j = l}), we denote it by {i, j} ∼ {k, l}.

Define the following quantities.

αij , P (Uij = 1) = P ((Xn(i), Y n(j)) ∈ A(n)
ε (X, Y )) (13)

β{ij}{kl} , E(UijUkl) where {i, j} ∼ {k, l} (14)

We can easily derive uniform bounds for these quantities.

α , 2−n(I(X;Y )+ε1) ≤ αij ≤ 2−n(I(X;Y )−ε1) , α
′

(15)

where ε1(ε) is a continuous positive function of ε such that
ε1(ε) → 0 as ε → 0. The upper bound for αij is valid for
all n while the lower bound is valid for sufficiently large n
(see [14]).

Similarly β{ij}{kl} can be bounded uniformly (see Ap-
pendix) to give

2−2n(I(X;Y )+2ε2) ≤ β{ij}{kl} ≤ 2−2n(I(X;Y )−2ε2) , β (16)

The quantities involved in equation (3) can now be esti-
mated as below.

λ , E(U) ≥ θ1θ2α (17)

∆ ,
1
2

∑
{i,j}

∑
{k,l}∼{i,j}

E(UijUkl)

≤ 1
2
θ1θ2(θ1 + θ2 − 2)β (18)

δ , max
{i,j}

∑
{k,l}∼{i,j}

E(Ukl) ≤ max
{i,j}

(θ1 + θ2 − 2)α
′

= (θ1 + θ2 − 2)α
′

(19)

The three terms in the exponent in equation (3) can be
bounded to give

λ2

8∆
≥ 1

8
2n(R2−ε

′
) (20)

λ

2
≥ 1

2
2n(R1+R2−I(X;Y )−ε1) (21)

λ

6δ
≥ 1

12
2n(R2−2ε1) (22)

where ε
′
, 2(ε1 + 2ε2).

Substitution of these bounds into equation (3) gives us
equation (9).

lim
n→∞

1
n

log log
1

P (U = 0)
≥ min(R2, R1 + R2 − I(X;Y )) (23)

C. Proof of the lower bound

We will now derive a lower bound for the probability of
non-existence of any jointly typical sequences using Lovász
Local Lemma. We employ Lovász Local Lemma (Theorem
2.3) to the θ1θ2 events as defined by the equation (11).
Because of symmetry, we can set all xi in equation (5) to be
the same. Then, Theorem 2.3 yields the following. Suppose
there exists 0 ≤ x ≤ 1 such that

α ≤ P (Uij = 1) ≤ x(1− x)(θ1+θ2−2) (24)

Then
P (U = 0) ≥ (1− x)θ1θ2 (25)

Simple Calculus can be used to show that the maximum
value of the function f(x) = x(1− x)n is less than (ne)−1.
Hence for equation (24) to have a solution at all, we need
α ≤ ((θ1 +θ2−2)e)−1. This is equivalent to the assumption
that R2 ≤ R1 < I(X;Y ). Under this assumption, choosing
x = θ1

−1 satisfies equation (24) and hence from equation
(25), we have

P (U = 0) ≥ exp(−(θ2 + 1)) (26)

Further improvement of the lower bound can be achieved
by using the other version of Lovász Local Lemma given in
Theorem 2.4. λ and δ are as defined in equations (17) and
(19). In this case, τ = max{ij} P (Uij = 1) and this is upper
bounded by α

′
from equation (15). Using Theorem 2.4, we

can write

P (U = 0) ≥ exp(−λϕ(δ + τ)) (27)

Combining equations (26) and (27) we have

− log P (U = 0) ≤ min (θ2 + 1, λϕ(δ + τ))

≤ min(θ2 + 1, θ1θ2α
′
ϕ(δ + τ))(28)

Under the assumption R2 < R1 < I(X;Y ), δ + τ ≤ (θ1 +
θ2 − 1)α

′ → 0 as n →∞ and hence ϕ(δ + τ) → 1. Taking
logarithms across equation (28) and letting n →∞ gives us

lim
n→∞

1
n

log log
1

P (U = 0)
≤ min(R2, R1 + R2 − I(X;Y )) (29)



Comparing equations (23) and (29), we see that under the
assumption R2 < R1 ≤ I(X;Y ), the result of Theorem 3.1
is tight.

D. Tail Estimates

Using Theorem 2.2, one can also compute an upper bound
on the probability that there exists less number of jointly
typical sequences than expected. The terms being minimized
in the exponent in equation (4) can be approximated as

λ2

8∆ + 2λ
≥ θ1θ2α

2

2α′ + 4(θ1 + θ2 − 2)β

≥ 1
8

θ1θ2α
2

α′ + θ1β
(30)

≥
{

1
162n(R1+R2−I(X;Y )−3ε1) if R1 < I(X;Y )

1
162n(R2−(2ε1+4ε2)) if R1 > I(X;Y )

(31)

λ

6δ
≥ θ1θ2α

6(θ1 + θ2 − 2)α′ ≥ 1
12

2n(R2−2ε1) (32)

For 0 ≤ a ≤ 1, the exponent can be calculated as

− log P (U ≤ aλ)

≥
{

( 1−a2

16 )2n(R1+R2−I(X;Y )−3ε1) if R1 < I(X;Y )
( 1−a

16 )2n(R2−(2ε1+4ε2)) if R1 > I(X;Y )
(33)

Note that we are usually interested in the event that there
are significantly less number of jointly typical sequences than
expected. Keeping this in mind, choose a = 1−e−nγ . Then,
we have that

lim
n→∞

1
n

log log
[
P

(
E(U)− U

E(U)
≥ e−nγ

)]−1

≥
{

R1 + R2 − I(X;Y )− γ if R1 < I(X;Y )
R2 − γ if R1 ≥ I(X;Y ) (34)

E. Generalization to several random variables

The results of the previous sections can be easily gener-
alized to the case of more than 2 random variables. In this
case, the quantity A(X1;X2; . . . ;Xn) defined below plays
a role similar to that of mutual information in the 2 variable
case.

A(X1; . . . ;Xn) ,
n∑

i=1

H(Xi)−H(X1, . . . , Xn) (35)

The case of 3 random variables is illustrated below. We
state the following result without proof. The result follows
from using Theorem 2.1 in the same way as it was used to
prove Theorem 3.1.

Theorem 3.3: Suppose X , Y and Z are three corre-
lated finite-alphabet random variables with joint distribution
p(x, y, z). For any ε > 0 and any positive real numbers
R1 > R2 > R3 such that R1 + R2 + R3 > A(X;Y ;Z), if
three collections of sequences CX , CY and CZ are generated
with uniform distribution (with replacement) on the typical

sets A
(n)
ε (X), A

(n)
ε (Y ) and A

(n)
ε (Z) of size θ1 = 2nR1 ,

θ2 = 2nR2 and θ3 = 2nR3 respectively, then the number
of jointly typical sequences U in this collection satisfy the
following relation:

lim
n→∞

1
n

log log
1

P (U = 0)
≥ min(R1 + R2 + R3 −A(X;Y ;Z), R3,Γ) (36)

where

Γ , R1 + R2 + R3 −
max(R1 + R2, R1 + R3, R2 + R3, R1 + I(Y ;Z),

R2 + I(X;Z), R3 + I(X;Y )) (37)
Upper bounds on the tail probabilities can be derived

similarly.

IV. FULLY CONNECTED GRAPH

In this section, we investigate the other extreme case of
every pair of sequences picked from the respective typical
sets being jointly typical. Suppose we pick M sequences
from the typical set A

(n)
ε (X) and N sequences from the

typical set A
(n)
ε (Y )(independently with replacement). We are

interested in the probability that all MN pairs of sequences
are jointly typical.

A. Summary of Results

Theorem 4.1: Let FC be the event that all MN pairs of
sequences are jointly typical. The main result of this section
is the following upper bound on the probability of the event
FC.

lim
n→∞

− 1
n

log P (FC) ≥ (M + N − 1)I(X;Y )

+min
P

(N − 1)I(Y ;X2, . . . XM | X1)

+A(X1; . . . ;Xm | Y ) (38)

where Xi, 1 ≤ i ≤ M are random variables with
distribution PX . The minimization is over the family P of
conditional distributions PX1,...,XM |Y .

B. Proofs

Let Xn(i) be the xn sequence picked at the ith drawing.
Let PXY be the joint distribution of X and Y with marginals
as PX , PY . We derive an upper bound for the event FC by
successively conditioning on the conditional type class with
respect to the earlier picked sequences. This is illustrated
below.

P (FC) =
∑

P̄∈G1

P (FC | Pxn = P̄ ) | TP̄ |
| A(X) |

(39)

The summation in equation (39) runs over all type classes
P̄ which belong to the collection G1 defined below.

G1 , {P : | P − PX |≤ ε} (40)

We now condition on the conditional type of the second
sequence picked with respect to the first sequence. Note that
the V - shell given Xn(1) in which Xn(2) lies must be such



that PXn(2) is close to the distribution PX . This can be
expressed as the following constraint on V2.

G2 , {V2 : |
∑
∼x1

P̄ V2 − PX |≤ ε} (41)

Equation (39) can now be further conditioned as

P (FC) =
1

| A(X) |
∑

P̄∈G1

| TP̄ |
∑

V2∈G2

| TV2 |
| A(X) |

×P (FC | P̄ , V2) (42)

In the above equation P (FC | P̄ , V2) denotes the condi-
tional probability of the event FC given the first sequence
belongs to type class P̄ and the second sequence has condi-
tional type V2 given the first sequence.

This conditioning process can be continued till we have
conditioned on V2, . . . , VM . Each of these has to satisfy a
constraint similar to equation (41). For 2 ≤ i ≤ M , the
general form of the constraint can be expressed as

Gi , {Vi : |
∑
∼xi

P̄ V2 . . . Vi − PX |≤ ε} (43)

After the conditioning on P̄ , V2, . . . , VM , the probability
can be written as

P (FC) =
1

| A(X) |
∑

P̄∈G1

| TP̄ |
∑

V2∈G2

| TV2 |
| A(X) |

. . .

· · ·
∑

VM∈GM

| TVM
|

| A(X) |
× P (FC | P̄ , V2, . . . , VM ) (44)

Now, we turn to the question of evaluating P (FC |
P̄ , V2, . . . , VM ). For the event FC to occur, each of the N
yn sequences must be picked from a conditional type class
V that ensures that the yn sequence picked is jointly typical
with all the M xn sequences. This requirement places the
following system of constraints on the conditional type class
V .

G , {V : |
∑
∼xi

P̄ V2 . . . VMV − PXY |≤ ε 1 ≤ i ≤ M} (45)

Each yn sequence can be picked from any conditional type
class V ∈ G and be jointly typical with all M xn sequences.
Thus

P (FC | P̄ V2, . . . , VM ) =
(∑

V ∈G | TV |
| A(Y ) |

)N

(46)

Substituting equation (46) in (44), we have the final
expression.

P (FC) =
1

| A(X) |
∑

P̄∈G1

| TP̄ |
∑

V2∈G2

| TV2 |
| A(X) |

. . .

· · ·
∑

VM∈GM

| TVM
|

| A(X) |
×

(∑
V ∈G | TV |
| A(Y ) |

)N

(47)

We now use the fact that there are only polynomial number
of type classes and conditional type classes to bound equation
(47) as

P (FC) ≤ 2nε
′

max | TP̄ || TV2 | · · · | TVM
| | TV |N

| A(X) |M | A(Y ) |N
(48)

where the maximum is over all the types and conditional
types P̄ ∈ G1, Vi ∈ Gi, V ∈ G and ε

′ → 0 as n →∞.
We use the following bounds for the different conditional

typical sets (see [1]).

| TVi(x
n
i | xn

1 , . . . , xn
i−1) | ≤ 2n(H(Vi|P̄V2...Vi−1)+δ)

| TV (yn | xn
1 , . . . , xn

M ) | ≤ 2n(H(V |P̄V2...VM )+δ) (49)

Using these bounds, equation (48) can be written as

P (FC) ≤ 1

| A(X) |M | A(Y ) |N
2nε

′

max 2n(H(P̄ )+δ)

×2n(H(V2|P̄ )+δ) . . . 2n(H(VM |P̄V2...VM−1)+δ)

×2n(H(V |P̄V2...VM )+δ) (50)

Define random variables X1, . . . , XM such that Xi has
distribution PX for 1 ≤ i ≤ M . Further, let the joint
distribution of Xi and Y be as PXY for all 1 ≤ i ≤ M .
Denote the distribution PX1,...,XM |Y by P .

By continuity of entropy, equation (50) can be written in
terms of these random variables as

P (FC) ≤ 1

| A(X) |M | A(Y ) |N
2nε

′

max
P

2n(H(X1)+δ
′
)

×2n(H(X2|X1)+δ
′
) . . . 2n(H(XM |X1...XM−1)+δ

′
)

×2n(H(Y |X1,...,XM )+δ
′
) (51)

where the maximization is over all distributions in P .
Using the bound | A(X) |≥ 2n(H(X)−ε) and a similar

bound for | A(Y ) |, we can simplify equation (51) as

P (FC) ≤ maxP 2nδ
′′

× 2−n[H(X2)−H(X2|X1)]

× 2−n[H(X3)−H(X2|X1X2)] . . .

× 2−n[H(XM )−H(XM |X1,...XM−1)]

× 2−nN [H(Y )−H(Y |X1,...,XM )] (52)

where δ
′′

, (M + N − 1)(δ
′
+ ε) and the maximization

is over the distributions PXi|X1...Xi−1 for 1 ≤ i ≤ M and
PY |X1...XM

.
The exponent of the probability can be lower bounded as

− 1
n

log P (FC) ≥ minP I(X1;X2) + I(X1X2;X3) + . . .

+ I(X1X2...XM−1;XM )

+ NI(Y ;X1X2 . . . XM )− δ
′′

(53)

Further simplification yields

lim
n→∞

− 1
n

log P (FC) ≥ (M + N − 1)I(X;Y )

+ min
P

(N − 1)I(Y ;X2, . . . XM | X1)

+ A(X1; . . . ;XM | Y ) (54)



V. CONCLUSIONS

The main results of this paper are Theorem 3.1, Theorem
3.2 and Theorem 4.1. With Theorem 3.1, we show that
the probability of there being no jointly typical sequence
in a sampling from the respective typical sets of 2 random
variables goes to 0 double exponentially. In Theorem 3.2, we
bound the probability of there being significantly less number
of jointly typical sequences than expected. In Theorem
4.1, we investigate the contrasting case where all pairs of
sequences in a sampling are jointly typical.
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VII. APPENDIX

We derive a uniform bound on β{ij}{kl} where {i, j} ∼
{k, l}. Without loss of generality, let us derive the bound of
β{ij}{il}.

We define Aε(xn) as the set of all sequences yn such that
(xn, yn) ∈ Aε(X, Y )

β{ij}{il} = E(UijUil)
= P (Uij = 1 and Uil = 1)

=
∑

xn∈Aε(X)

P (Y n(j), Y n(l) ∈ Aε(xn) | Xn(i) = xn)
| A(X) |

=
1

| Aε(X) |
∑

xn∈Aε(X)

(
| Aε(xn) |
| Aε(Y ) |

)2

(55)

From [1], we have a uniform bound on | Aε(xn) | where
xn ∈ Aε(X).

2n(H(Y |X)−ε̃) ≤| Aε(xn) |≤ 2n(H(Y |X)+ε̃) (56)

where ε̃(ε) is a continuous positive function of ε such that
ε̃(ε) → 0 as ε → 0. The upper bound is true for all n while
the lower bound is true for sufficiently large n.

Substituting equation (56) in equation (55) gives us equa-
tion (16).
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