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Abstract — We consider the asymptotic properties
of source code sequences which approach the opti-
mal rate-distortion bound. In this paper we show
that for any arbitrary source code sequence which ap-
proach the optimal rate-distortion function R(D) of a
discrete memoryless source, the empirical conditional
distribution of the n-length source sequence given the
n length reconstruction sequence is close to the n-
product of the unique minimum-mutual-information
test channel conditional distribution. This closeness
is given by the convergence of the normalized condi-
tional divergence. One of the implications of this re-
sult is that it is possible to approximate arbitrary dis-
crete memoryless channels as test channels in source
coding. Though our results are presented for station-
ary discrete memoryless sources, these can be gener-
alized to sources with memory.

I. INTRODUCTION

Source coding [1, 8, 9] deals with efficient representations
of information sources into index sets and efficient recon-
structions of the sources from those index sets under some
fidelity criteria. Ever since Shannon provided an information-
theoretic characterization of the rate-distortion trade-off in
source coding, the properties of efficient source codes have
been studied in the literature.

In this paper, we explore one such set of properties of good
source codes. Although, Shannon’s rate-distortion function
for a discrete memoryless source is given in terms of per-letter
distributions, the actual codes which approach such bounds
need to be constructed over sufficiently large block-lengths.
The empirical properties of sequences of good source codes
which approach the optimal rate-distortion bound have not
been studied in the literature, even though, the asymptotic
properties of many quantizers have been studied in detail [2,
3].

An outcome of Shannon’s formulation of rate-distortion
trade-off in source coding is the remarkable notion of test
channels, in which the reconstruction random variable denoted
by X is related to the source X via a forward channel Viixs
and the test channel characterized by Wy x- This is illus-
trated in Fig. 1.

The main results of this paper are summarized as follows.
The following results are with respect to discrete memoryless
sources with a bounded distortion measure. It is possible to
extend these results to more general sources.

e The empirical conditional distribution of the n-length
source vector X” given the n-length reconstruction vec-
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Figure 1: Source coding: the forward channel is given by
Vi x and the test channel is given by Wy %.

tor X’“, ie., VAVX,LlX,, of any sequence of good source
codes is asymptotically close to the n-product of le %
where V_VX| % is the unique test channel conditional dis-
tribution (uniqueness is also proved in this paper) in-
duced from the information-theoretic minimization of
the Shannon mutual information subject to the fidelity
criterion. A sequence of source codes is said to be good
if they approach the optimal rate-distortion function
asymptotically. That is, although the encoder may be
acting on blocks of source samples at a time, the result-
ing conditional distribution of the source block given
the corresponding block of reconstruction samples ap-
proaches that of a discrete memoryless channel. In
other words, it is possible to simulate discrete mem-
oryless channels via test channels using a sequence of
good source codes. The closeness of approximation is
given by the convergence of the normalized divergence.

e Although a similar result does not hold true for the case
of the empirical distribution V. x. of the n-length re-

construction vector X" given the source vector X", and
the empirical distribution Ug, of the n-length recon-
struction vector, the first order empirical distribution
of the above are close to the corresponding minimum-
mutual-information distributions.

The precise statements of these results are given in the
sequel. It is worth noting that similar results have been ob-
tained for the case of channel coding in [4, 5, 6]. In this paper
our analysis follows that of [6]. This leads us to the follow-
ing interesting observation. Consider a pair of dual [7] source
and channel coding problems, where the rate-distortion func-
tion R(D) is equal to the capacity cost function C'(W), and
a pair of good source code sequence and a good channel code
sequence which approach R(D) = C(W). Given a pair of vec-
torsx € X" and X € X " for an observer, as n increases, it
will become increasingly difficult to detect whether this pair
of vectors came from a source coding operation or a channel
coding operation. In other words, loosely speaking, asymp-
totically, the only way one could differentiate between source
coding and channel coding operation is the causal relation re-



lation between the source/channel-output vector x and the
reconstruction/channel-input vector x.

II. NOTATION AND MAIN RESULTS

Consider a stationary discrete memoryless source (DMS)
X characterized by a distribution Px with a finite alphabet
X, areconstruction alphabet x , a bounded distortion measure
d: X xX — Rt. The distortion measure on vectors is defined
by the average distortion of its samples:

- % z: d(ws, )

Vx € X", %k € X" where z; and #; denote the ith samples of
x and x respectively, and n denotes block-length. We use the
letters P, @Q and U to denote distributions, and V' and W to
denote conditional distributions.

A source code {C, f} with parameters (n, M,A) consists
of (1) C c X", |C| = M, and (2) a mapping f : X" — G
such that Ed(X, f(X)) = A. A sequence of source codes
{{C,, fn}}s21 (where the code with index m has parame-
ters (n, M, A,)) is said to be good with respect to a triple
(Px,d, D) of source distribution Px, distortion measure d and
a number D € R if

lim — log M, = R(D) and lim A, =D,
n— oo

n—roo

where R(D) is the optimal Shannon rate-distortion function:

R(D) =

V)?|x

inf N I(PX7VX|X):
:BEd(X,X)<D
where for a pair of distribution Px and conditional distribu-
tion Vg x, I(Px, Vi x) denotes mutual information [8, 9]. For
ease of notation, let us denote X™ = f,(X™) for a source en-
coder mapping frn. Let Ugn, VanXn and Wx"\)‘(n denote the
distribution of X", encoder (quantizer) transformation and
the conditional distribution of the source vector given the re-
construction vector associated with the source code {C,, fr}.

For any triple (Px, Vy, X,V)’A(| ) consisting of a distribution
Px and conditional distributions V¢ x, and VX| « define
X\X(xlx)

D(Px|Vg xIViix) = D D Px(@)Vi x(&lz)log 7=y

z€EX 33692

It can be noted that D(Px|Vy x|[V: |X) > 0. Equality holds

if and only if V& € X such that Px(z) > 0, and V& € X,
the following equality holds: Vi |y (Z|z) = XlX(m|x) Fur-
ther, since we have asummed the distortion measure to be
bounded, it follows that in the information-theoretic optimiza-
tion of I(Px, Vg x), V V¢ x that achieve the optimality, the

following is true: V& € X, the induced Uy () > 0. This can
be seen from the following arguments. Using Lemma 4 of [11],
if for some # € X, and some VX‘ « that achieves the minimiza-
tion, the induced distribution Uy, . (£) = 0, then the distortion
measure has to satisfy the following relation: Vz € X,

d(z, &) > —co loglex(x|x)+do( x) (1)

for some ¢z > 0 and arbitrary do(z), where WX|X is the in-

duced test channel distribution. This is because Vz € X,

Vi o Gl2)

XlX(z|x) = 0. Since do(z) has to finite, this implies that
Vx € X, d(z, &) = oo which is a contradiction of the assump-
tion that the distortion measure is bounded.

First we have the following lemma which asserts the obvious
statement that the mutual information per sample between
the n-length source vector X™ and the reconstruction vector
X" is asymptotically equal to the rate-distortion function.
Lemma 1: For any source code sequence which is good with
respect to a triple (Px,d, D), we have

1
lim —I(P%, Vxan") = R(D).

n—oo T

Proof: By the definition of R(D) we have

lim lI(PX,VX,,lxn) > R(D). (2)

n—00 N

Using the property of good codes,

%I(P}}, Vin xn) = %H(X") < %log M,. 3)
From this the result follows.
a

Next we shall note the important properties of the test
channel distribution induced from the information theoretic
per-letter characterization of the rate-distortion function. The
most important of them states that even though, the con-
ditional distribution V¢ y that minimizes I(Px, Vg x) such
that Ed < D may not be unique, the resulting test channel
conditional distribution Wy % is unique. The proofs of the
following theorems are given in the Appendix.
Theorem 1: For astationary DMS Px, and YWy ¢ € D'(D),
we have

(a) Wxix < V_VX\)ZH

(b) I(PXvVX\X) - I(PX7‘_/X|X) 2 D(U)“(|WX|)?||V_VX|)?)a

(c) If Vg x < Vg x, then the above holds with equality,

(d) If Vi x achieves I(Px,Vg x) = I(Px,Vgx), then
WX|X =

X|X*
where
_ argmin = N
® Vxix = VX|X :Ed< D I(PX,V)ng), WX|X($|$) =
Px (@) Vg x (8]=)

Soex Px(a)vg x @) VPEXTEL,

* D(D) ={Vxx : Bd < D},

Px (2)Vx x(2|z)

(D) { X|X WX|)h((x|§7) = ZGGXPX(G)VX|X(§:|G)

Vo € X,& € X for some Viix ED(D)}.

The above theorem leads us to the next result which
says that for a source code sequence good with respect to
(Px,d, D), the empirical conditional distribution of the n-
length source vector given the n-length reconstruction vector
is asymptotically close to the m-product of the unique test
channel conditional distribution.

Theorem 2: For a source code sequence good with respect
to (Px,d, D), we have

lim —D(UXn|W "|X"||W;|X) =0,

n—o0



where W;‘ %
bution WX| % that achieves the optimal rate-distortion bound.

One would expect to get a similar result for the quantizer
conditional distribution and the reconstruction distribution.
But a more careful look at these distributions reveal that it
is far from the corresponding n-product distributions induced
from the per-letter optimization of I(Px, V¢ x). Still, we will
show in the sequel that the above approximation is true for
the first order empirical distributions, and is elucidated in
Theorem 3, 4 and 5. It should be noted that similar results
can be obtained for the corresponding kth order empirical
distributions for fixed k, similar to those considered in [6].
Before we do this, let us consider the following definitions. For
any source code sequence {{C,, f,}}52,, define the encoder
conditional distributions as

is the n-product of the unique test channel distri-

o1 i fa(x) =%
VX"|X" (X|x) = { 0 else
Vx € X", x € X™. Define Va € X,be /'?, the per-letter joint
distribution of the ith sample of the source and the recon-
struction induced from the encoder mapping as

QXiin (a’ b) = Z Z

xc X" :x;=a :‘:e;\?":ii=b

Px (%) Vi xn (X]%),

the first order empirical conditional distribution of the quan-
tizer as

V(l) (b|

Xn|xn

ZQX“X a,b)

the first order empirical reconstruction distribution as

Z ZQX“X (z,b)

weX i=1

o (b

and the first order empirical conditional distribution of source
vector given the reconstruction vector as

1 14
W(l) == 1) b)EZQXi,Xi(a’b)
e i=1

) galalb) =

Theorem 3: For a source code sequence good with respect to
(Px,d, D), the first order empirical conditional distribution of
the source vector given the reconstruction vector is close to the
unique minimum-mutual-information conditional distribution
WX| %!

lim D(US) W)

n—o0 Xn|Xn

The convergence results for the empirical conditional dis-
tribution of the source vector given the reconstruction vector
can not be easily extended to the empirical distribution of the
reconstruction vector given the source vector and the empiri-
cal distribution of the reconstruction vector. But for a class of
source codes, called regular codes, such convergence of these
distributions take place. An (n, M, A) source code is said to
be regular if the conditional distribution Vien|xn <K Vz . for

X\X
such that Ed < D, and

Wy %) = 0.

some V};lx
(P, VZ,) = nR(D). (4)

In the following theorems we will present these convergence
results.

Theorem 4: For a regular source code sequence good with
respect to (Px,d, D), the first order empirical conditional dis-
tribution associated with the encoder transformation is close
to one of the minimum-mutual-information conditional distri-
butions:

lim

n—00 VX\X

: (1)
min V Vi =0
(P iy PPV Vi)

Theorem 5: For a regular source code sequence good with
respect to (Px,d, D), the first order empirical distribution of
the reconstruction vector is close to the one of the minimum-
mutual-information reconstruction distributions:

DU |Ug) =0,

lim min
n—oo U4 €B(D)
where

B(D) = {UX : 3VX|X such that V& € /f’,

:ZPX

reEX

Viix (#|z), and I(Px, XlX) = R(D)}

III. APPENDIX

Proof of Theorem 1: Let us prove statement (a) by contra-

diction. Suppose there exists VX| « Which induces W;q 5 such
that for some a € X and b € X the following is true:
Wy x(alb) =0 < Wy 5 (alb). (5)

Consider V)(flﬁ)f = aVXlX (1
1 — a) Z PX

+a 3 PV alo)log V), + HOE)

—a)VX‘X. Now

« (@[x) log V™) (2]z)

(o)
Vi) = X|x

I(Px, VT

©,&
= (@ = )D(Px|Vz x[[VE2)
+(a = DH(Vy x|Px) = aD(Px |V 1 [IV{]))

—aH(Vg x|Px) + HUS)

= (a=1)D(Ux Wyl X|X)

+(a =)D |UL) + (@ — 1) H (Vg x| Px)

—aD(Ug Wy xIW}%) — aDUk IUZY)

—aH (Vi x|Px) + HU)

(o = 1)D(Tx Wi 2 IW)

—aD (U [Wi zIIWE%) + al (Px, Vi x)
+H(1— ) I(Px, Vg )
I(Px, Vg x) — @ [J(PX, Viix)
—I(Px, Vi x) + DU Wi £ IW % )]

Now note that

W(a)(a|b) _ ( )W ((L|b) (S;) + a X|X(a|b)U)§'(b)
Uz (0)
aWy 5 (alb)U% (b)

)

(@)
vE )



and
(alb)
DU Wiz IW%) > U (5)W,  (alb) log %
X|X

(1 - W 4 (alb))

(1= Wi (alb))

Clearly U% (b) > 0, and Ug(b) > 0. In the limit a | 0, the
RHS of the above equation goes to co. Hence getting a con-
tradiction.

We will now prove statement (b) by contradiction. Let

there exist Wx| % € D'(D) (which of course implies the exis-

tence of V'(X|X) € D(D)), such that

Ui (0)(1 = Wy x(alb)) log

I(Px, Vi x) = I(Px, Vg x) < DU Wi Wy z).  (7)
() _ Y/
Let VXO“X (1—a)Vgx +aVg - Now
(@) (4
I(Px, )((Ol‘))() = ZPX V( )(x|x)log XX

() 2,
Uj{ ()
—aD(Ug Wy 2 [Wx )

DU W W 2)

Now let us take the derivative of the above equation with
respect to a to get

(a)
a(PX’VXlX)_I , _
g = 1(Px, Vi x) = I(Px, Vi ) ®)
) DU WL Wy 1)
—D(Us Wi 2 1W x) + ol :

Since W;{‘TEX < WX\)% (using (a)), we have

1s]
which results in
oI(Px, V)
TXlX <0 (10)
a=0

(PX,V}(;T))() will be surely smaller than

I(Px, V)gl x) thus contradicting the optimality of ‘_/}2-‘ x-
Now let us prove (c). Note that

I(PXaVX|X) - _X|X) _D(U)’(|WX|X||V_VX|)‘()

Wy x (XIX)
:prv}i'lx |:10g|7 _EPXV}"(\X log

So for small a,

I(Px, (11)

Px(X) Px(X)

‘f,';(()‘) for all x € X and

The above equation and (b) show that Ep_ ¢

X|x

Ep,v X|Xg(X’X) for all Vi . Now Vz € X, let

Let g(z,%) = log € X.
<

&
9(X, X)

B(z)}
(12)

B(z) = maxg(z,£), and B'(z)={teX: g2 =

WX|X(X|X):| _

Thus we can conclude that Vz € X, VXlX(-|m) puts mass on a
subset of B'(z). Hence for any Vg x < Vf(|xa the same must
be true, thus proving the required result.

(d) follows directly from (b). An independent alternate
proof of (d) can be obtained, and is given in the folioing us-
ing the_ techniques of [10]. Let V)’(\x achieve I(PX’V)I2|X) =
I(Px,Vyx). Let Wx\x and WX‘X be the corresponding test
channels respectively. With the source fixed at Px, define a bi-
nary random variable Z with Pz(Z = 1) = a = 1-Pz(Z = 0).
for some 0 < @ < 1. Let X " be a new random variable defined
on X such that Pg, x = aVXlX (1 —a)Vix, Pxjx17(X =
:1:|X' 2,Z =0) = Xlx(m|x) and Py (X = z|X' =

=1) = Wy x(2|2) for all z € X and & € X, and X’ and
Z are independent. This also implies that Py, ,(z|2,0) =
W;(‘X(th:) and Py z/ 5(2|2,1) = V_VX‘X,(x|§:) Vr € X and
% € X. Thus the joint distribution of X, X' and Z are deter-
mined. Since I(Px, V) is convex in Vy x, and Vy )’"(|X

achieve the minimization of I(Px, Vx x), we have

I(Px, P)‘(l|x) = I(PX70V§\X+(1_0¢)VX|X) = al(Px, V)’Ef|x)

+(1_0‘)I(PX7‘7)”(|X) ZI(PXIZvP)?'|x,z|PZ)- (13)
Using the chain rule of mutual information [8], it can be seen
that

I(PX\X'1P2|X',X|P)”(') = I(PX\Za P)%’|X,Z|PZ) - I(PXvP)?qx)
= 0 (14)
Hence
PX|X’,Z = Px|x' (15)
which implies that
W),(\X(xlj‘) ZPX\X' (z]2,0) = X|X’ z(2]2,1) = X|x($|$)
) (16)
Ve € X and & € X.
O

Proof of Theorem 2: Follows directly from Lemma 1 and
Theorem 1(d).
O

Proof of Theorem 3: Note that

Y Usen Q) Win 2 (X[%)

x,%X

D(Ugn [Wn 20 Wi x) =

H?:l W

x, 1%, (®il&:)
[Tic Wy x (xil2:)

+D(Usen Win oo | TT W12,

i=1

> DU, [Wx, 12, [Wx%)-

log

>
i=1
The RHS is equal to
n U—A -
feX i=1 Z 1 Aj(x)

)}

"
D(Wy, x, (&)W % (-|2)



|2 )

1U WX X; &) -
(21 8Py ('x)nwxm(m)]
=7 Os, @)

1 1 3
=nDUNIWE) Wy %),

where we have used the non-negativity and the convexity of
information divergence. Now using Theorem 2, we get the
desired result.

O

Proof of Theorem 4: To prove this theorem, let us define
the following functions:
T(VX\X) = mlré D(PX|VX\X”VX|X)

X|x

(17)

w(d) = (18)

max ( )’
X|X
XUT h( X|)f)<5 Ed<D ‘

where in the above equation Va € X and b € X, the following
are true: Ug(b) = -, cx Px(a)Vx x(bla) and Wy, 3 (alb) =
Px(a)Vy|x (bla)/Ux (b),
V= {VX’|X 1 BEd < D:I(PXaV)ﬂX) = R(D)},
and
PxVy x -

h(Vg ix) = Px| Wy % ). (19)

XX ( Eaex Px(a )VX|X('|a) XX

Note that Va € X and b € X

Px(a)V) _ (bla)
W) en(alb) = o .0
X Seex PX@VE) . (0l)
Hence for a fixed source distribution, if wh is close to

Xn|Xn

Wy %, then V)((&( must be close to Vy,

Since the code is regular, using Theorem 1(b) and 1(c), it
can be noted that w(0) = 0. Consider the function r(-) of any

two conditional distributions VX| x and V;gl o follows:
T(QV§|X +( ) X|X) = ,mln D(PX|
Vx|x
(Vi x + (1= )V OlIVk )
= min” D (Px|
Vi ixEVVE €V
Vg x + (1= a)qux)
< min Z Px(z)
Vix €V VE xS

[aD(Vi  ([0)IIV x (12))
+ (1 =)DV}, (12)|[V x (12))]
ar(Vi ) + (1= a)r(vVi )

where we have used the following fact

V={Vix =aVix + (1 -a)V{ x : Vi x €V, VE | €V}
(21)
i.e., V is convex using the convexity of mutual information in
V%|x» and the convexity of information divergence. Hence r
is convex. Clearly h is continuous and convex in V. Hence
the set K£(d) = {qux : h(VX\x) < 4,Ed < D} is compact,
and thus
w(d) =r(Vg|x5) (22)
for some Vi x s € K(§). Consider an arbitrary convergent
decreasing sequence 0, — 0. There must exist Vi x5 €
K(d5) for all n. Since K, which is the set of all conditional
distributions Viix such that Ed < D is compact, there must

exists a subsequence Vy X5n, VX| » for some V;TX € K.
Using the property of r and h,
kl;n;o W(n,) = kll_}n;o r(Vx x5, ) =r(Vgix), (23)
and
h( X|X) = hm h(V: X|X,6n, )< kll)n;o On, =0 (24)
Hence V;TX € IC(O). This implies that
w(0) 2 r(Vily) = lim w(én,). (25)

Since w is monotone nondecreasing, the result follows.

O

Proof of Theorem 5: Define the set V as before, and the
following two functions

8) = Uy dr(Ug)= min DUg|Ug
w(J) U’%?i‘(a)r( %), and r(Ux) o B (Ux|Ux)
(26)
where
A(0) ={Ux : 9" (Ug) < 6}, (27)
where
(Ug) = min 28
g'(Ux) = (Vg x Ta Px @)V x (l2)=Ug ()} (28)
min  D(Px|[Vg x[IVi x)
{VX\X

First note that V is compact using the continuity of mutual in-
formation. Also note that for a fixed Px, D(Px|Vg x|l X|X)

is convex in the pair (V¢ x, V% . ). We can also note that

X|x
(Ug) = h* (Vg 29
9'(Us) = (Ve x50 Px @V |X(|m> Ug()} Vi) (29)
where h* is given by
h*(V)ﬂX) = ,min D(PX|V)"(\X||V)12|X)- (30)
{VX\X }

We have the following Lemmas:

Lemma A: For a function d’(y, 2z) which is convex and con-

tinuous in the pair (y, 2) over compact and convex sets Z and

Y, the following function h’ is convex and continuous over Y
b (y) =

mind' (y, z). (31)

z€Z

Lemma B: For a function h”(y) which is convex and contin-
uous in y over a convex and compact set ), a linear function



l, and a compact set W = {w : Iy € Y such that {(y) = w},
the following function is convex and continuous in w over W,

min A" (y).

32
yel=1(w) (32)

g (w) =

Using the above two lemmas, we can conclude that g* is
convex and continuous in Ug. Since r is convex and continu-
ous, and using the arguments of the proof of Theorem 4, the
desired result follows.

O

Proof of Lemma A: Let y = ayi1 + (1 — a)y2 where y,11
and y2 € Y. Then

Boay +(1—a)y:) =

. !
mind'(y, )

minzd' (y,az1 + (1 — a)z2)

21,22€

< min_ad (y1,21) + (1 — a)d (y2.22)
21,29€Z

= al'(y) + (1 - )b’ ().

Hence we have shown that A’ is convex. Now consider an
arbitrary convergent sequence y, — yo- Vn, we have h'(y,) =
d'(yn, 2;;,) for some z;; € Z. 3 a convergent subsequence zy,
such that limy_, o 2n, = 2§ for some 2§ € Z. Now

! _ 3 4 4 *\ _1: 4 *
h'(yo) = mind (yo, 2) < d'(yo, 20) = lim d(yn,,zn,) (33)

= lim h'(yn,)-
k— o0
Now using the convexity of A’ it can be concluded that &' is

continuous over ).
O

Proof of Lemma B: Let w = aw: + (1 — a)ws, with
w,wi,ws € W. Clearly Yw € W, 7' (w) is compact and
convex. Now

! . *
w) = min h
g (w) ,onn (v)
< min h*(ayr + (1 —a)y2
y1€l~ 1 (w1),y2€l™ 1 (w2) (ay ( Jv2)
< ah”(y1) + (1 — a)h™(y2)

min
y1€l~ 1 (w1),y2€l~1 (w2)
= ag'(w) + (1 - a)g (w2).

Hence we have shown that g’ is convex. Using arguments
similar to the proof of Lemma A, we can show that for any
convergent sequence w, — wp in W, there exists a subse-
quence wy, such that g'(wo) < limk— e g(wn, ). Hence the
desired result follows.

O
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